Projeto - SpeedPro Page 1 of 11

Projeto SpeedPro

Equipe

Diogo Rodrigues de Jesus - diogo.rjs@gmail.com Flávio José de Freitas - flavio@hardnews.com.br José Léo Gonçalves Filho - jlgoncalves@gmail.com Leonardo Goslar Otto - leonardootto@ig.com.br Samuel Alessandro Camargo - samuelctba@gmail.com

Professores Orientadores

Prof^o Gil Marcos Jess - Física IV - **gltjess@terra.com.br**Prof^o Afonso Ferreira Miguel - Sistemas Digitais II - **afonso.miguel@pucpr.br**Prof^o Edson Pacheco - Estrutura de Dados - **pacheco@ppgia.pucpr.br**Prof^o James Baraniuk - Circuitos Elétricos II - **baraniuk@rla01.pucpr.br**

1. Abstract

The objective of our project consists on a development of sensors to detect the flow of a person and determinate the time and the medium speed when he cross the sensors.

2. Resumo

Trabalho apresentado para as disciplinas de Física IV, Sistemas Digitais II, Técnicas Avançadas de Programação e Circuitos Elétricos II. Além disso temos como principal objetivo aprimorar nosso conhecimento colocando em prática tudo o que foi apresentado em aula pelos professores e também desenvolvendo a capacidade de desenvolver um projeto bem como trabalhar em equipe.

Projeto - SpeedPro Page 2 of 11

3. Objetivos

Inicialmente nosso projeto seria simular o funcionamento de uma lombada eletrônica, porém com a idéia dada pelo professor James Baraniuk decidimos desenvolver o SpeedPro, um marcador de velocidade voltado para atletas. Este equipamento mede a velocidade de um atleta em uma pista de atletismo, a distância ser percorrido pelo atleta é definido pelo usuário no software.

Desenvolvemos também um circuito que mede a temperatura ambiente pois após realizarmos algumas pesquisas com alunos do curso de Educação Física percebemos que há uma diferença no rendimento do atleta quando a temperatura está muito elevada ou muito baixa.

4. Descrição do projeto

Inicialmente planejamos o circuito no protoboard, o circuito básico que apenas detecta a presença de alguém foi cedido pelo professor Afonso, tivemos grandes problemas com o sensor receptor (Foto-emissor TIL78) pois o mesmo é muito sensível a luz, dessa forma os primeiros testes foram feitos com pouquíssima iluminação. Após este circuito estar funcionando adaptamos o circuito ao nosso projeto, usamos um flip-flop tipo D para determinar quando era o momento de iniciar e terminar a contagem do tempo.

Após toda essa parte funcionando demos inicio ao desenvolvimento dos pedestais para adaptarmos os sensores, procuramos fazer todos do mesmo tamanho para que o foto-emissor e o foto-receptor (TIL32) ficassem exatamente alinhados. para termos o isolamento do foto-receptor de qualquer influencia de luz externa fizemos um cano de 10cm e colocamos o mesmo dentro dessa forma ele passa a receber apenas o sinal do foto-emissor.

De início utilizamos cabos telefônicos para interligar todos os sensores porém tivemos grandes problemas com ruídos externos. Dessa maneira adaptamos o projeto para utilizar cabos coaxiais, estes possuem um maior isolamento eletromagnético.

Neste momento iniciamos a construção do software, um programa feito em Visual C ++, o programa possui um cronômetro que marca o tempo em que ele demora pra percorrer a pista, ou seja, pra atravessar os dois sensores. No programa o usuário digita a distancia a ser percorrida e dessa maneira calculamos a velocidade média e mostramos na tela.

5. Lista de materiais

Dois TIL78 (Foto-receptor);

Dois TIL32 (Foto-emissor);

Dois Soquetes para CI 8 Pinos;

Dois Soquetes para CI 14 Pinos;

Dois Micro-controladores PIC 12F675;

Um Circuito integrado MAX232;

Um Circuito integrado 74LS74;

Um Regulador de tensão 7805;

Um Regulador de tensão 78Lo5;

Dois transistores BC548;

Dois Resistores 4700hm;

Dois Resistores 1000hm;

Três Resistores 1K ohm;

Quatro Capacitores 1uF;

Dois Capacitores 100uF;

Um Capacitor 10uF;

Um Capacitor 47nF;

Um LCD 16x2;

Dois LEDs (um verde e um vermelho);

Um Sensor de temperatura de precisão LM35;

Placas de fenolite para a confecção das placas de circuito impresso;

Cabos Coaxiais:

Ferro Trefilado;

Retalhos de chapa de ferro;

Tubos de ferro:

Thinner (solvente para tinha);

Tinta esmalte fosca para pintar os pedestais;

Conectores e cabos.

Projeto - SpeedPro Page 3 of 11

6. Diagramas Elétricos

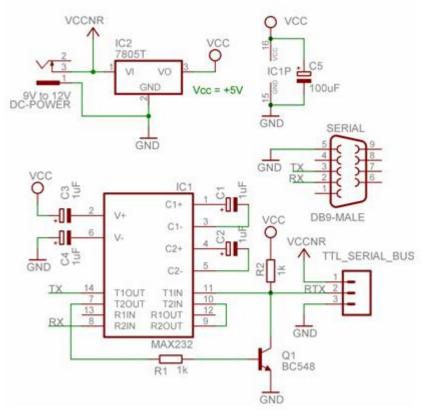


Figura 1: Diagrama da placa Comunicação Serial Conversor RS232 - TTL

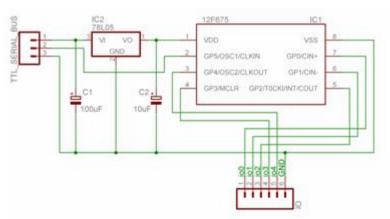


Figura 2: Diagrama da placa do Módulo M2 de I/O

Projeto - SpeedPro Page 4 of 11

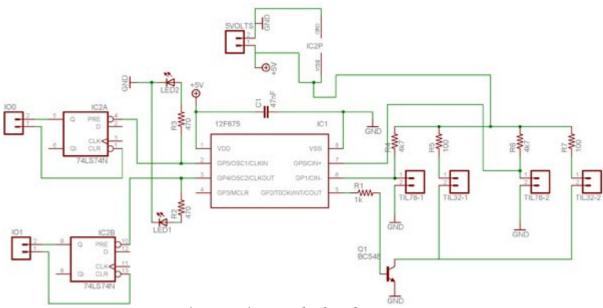


Figura 3: Diagrama da placa dos sensores

7. Layout das Placas de Circuito Impresso

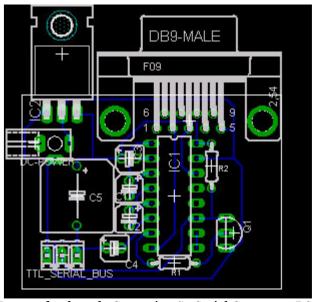
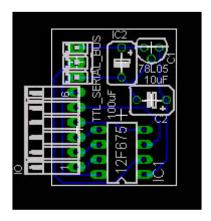
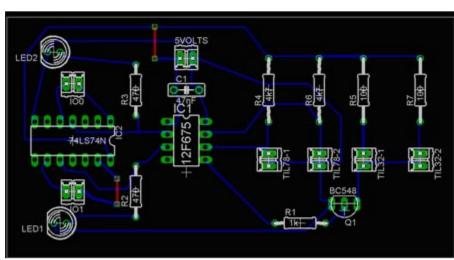




Figura 4:Layout da placa de Comunicação Serial Conversor RS232 - TTL

Projeto - SpeedPro Page 5 of 11

Figura 5: Layout da placa do Módulo M2 de I/O

Figura 6: Layout da placa dos sensores

8. Software desenvolvido

O software foi desenvolvido em Visual C++. Para o desenvolvimento do software utilizamos uma classe para fazer o cronômetro *CHighTime*, outra classe que desenha números como displays númericos que é a *CStaticCounter*.

Criamos também uma classe para comunicação serial *CSerial*, outra classe para a comunicação com o LCD pela porta paralela *Clcd*. Também criamos uma classe de controle *CControl* para efetuar o controle e a comunicação pela porta Serial com os sensores.

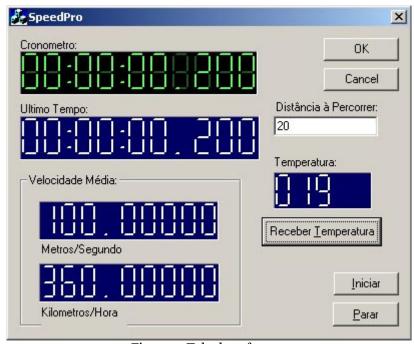


Figura 7: Tela do software.

9. Conclusão

A realização do projeto possibilitou a aplicação pratica do conteúdo aprendido nas aulas teóricas e também contamos com o aprendizado de inúmeros conteúdos que não são ensinados nas aulas teóricas.

Foi possível realizar o projeto mesmo depois de mudarmos sua idéia principal. A confecção dos

Projeto - SpeedPro Page 6 of 11

pedestais até o desenvolvimento do software e a publicação do site na internet, foram pontos que nos fizeram atingir os objetivos propostos pelo projeto integrado.

Também é muito importante trabalhar em equipe e de fazer um planejamento do que será realizado, para evitar problemas com o tempo no projeto.

É possível afirmar que quando o aluno tem que correr atrás das informações e investigar por soluções, fazem com que o aluno entenda com uma maior extensão o respectivo assunto.

10. Referências

MIGUEL, Afonso F. *Módulos de Aquisição*. [online] Disponível na Internet via WWW. URL: http://www.lami.pucpr.br/~afonso/Graduacao/LabEngComp/ModulosAquisicao.

MICROCHIP. *PIC12F675 Device.* [online] Disponível na Internet via WWW. URL: http://ww1.microchip.com/downloads/en/DeviceDoc/41190c.pdf

DALLAS Semiconductor *MAXIM. MAX232* +5*V-Powered, Multichannel RS-232 Drivers/Receivers.* [online] Disponível na Internet via WWW. URL:http://pdfserv.maximic.com/en/ds/MAX220-MAX249.pdf.

NATIONAL Semiconductor. *LM7805C - 5 Volt Regulator*. [online] Disponível na Internet via WWW. URL:http://www.national.com/pf/LM/LM7805C.html.

NATIONAL Semiconductor. *LM35 - Precision Centigrade Temperature Sensor.* [online] Disponível na Internet via WWW. URL:http://www.national.com/pf/LM/LM35.html.

11. Fotos

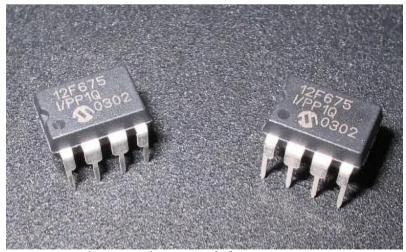


Figura 8: Micro-controladores PIC 12F675

Projeto - SpeedPro Page 7 of 11

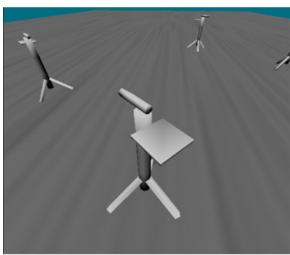


Figura 9: Desenho do pedestal em 3D feito em computador

Figura 10: No laboratorio de Soldagem / PUC-PR

Projeto - SpeedPro Page 8 of 11

Figura 11: Pedestais

Figura 12: Placa dos sensores

Projeto - SpeedPro Page 9 of 11

Figura 13: Preparando os pedestais para a pintura

Figura 14: Teste dos sensores

Projeto - SpeedPro Page 10 of 11



Figura 15: Sensor e placa

Figura 16: Sensores

Projeto - SpeedPro Page 11 of 11

Email: speedpro@hardnews.com.br.