PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ-PUCPR

ENGENHARIA DA COMPUTAÇÃO

Guilherme Nack Cordeiro Leonardo José Campos Pinheiro da Silva Ronald Campanari

PROJETO PLACAR PORTÁTIL

CURITIBA

Guilherme Nack Cordeiro Leonardo José Campos Pinheiro da Silva Ronald Campanari

PROJETO PLACAR PORTÁTIL

CURITIBA

2011

RESUMO

O projeto Placar Portátil, referente ao terceiro período do curso de Engenharia de Computação da Pontifícia Universidade Católica do Paraná, propõe o desenvolvimento de um placar utilizando basicamente quatro servos motores, um LCD e um arduino, que produzem o movimento e a lógica do mesmo. Que visa ser utilizado na marcação da pontuação e tempo de jogos como truco, futebol, etc.

SUMÁRIO

1 – INTRODUÇÃO	5
2 – OBJETIVOS	5
2.1 – GERAL	5
2.2 – ESPECÍFICO	5
3 – MATERIAIS UTILIZADOS	6
4 – DESCRIÇÃO GERAL	7
4.1 – HISTÓRIA DO PROJETO	7
4.2 – HARDWARE	7
4.3 – SOFTWARE	9
4.4 – PROGRAMA PROJETO	9
5 – PROBLEMAS APRESENTADOS	13
6 – GLOSSÁRIO	13
7 – CONCLUSÃO	16

1 - INTRODUÇÃO

Ao iniciarmos o terceiro período de nosso curso Engenharia da Computação, fomos solicitados a criar um projeto que envolva conhecimentos da área de atuação, o qual seria avaliado e desenvolvido ao passar das semanas pelos professores Gil Marcos Jess e Afonso Ferreira Miguel.

O tema do projeto foi proposto pelos próprios integrantes do grupo, que logo o desenvolveriam. Decidimos desenvolver um projeto chamado de Placar Portátil.

O placar portátil é um aparelho que se destina à exibir os pontos obtidos por dois times ou dois jogadores, ele indica com precisão e confiabilidade os pontos de uma partida, o nosso placar será desenvolvido utilizando-se principalmente itens que envolvam o estudo do semestre, onde procuraremos otimizar e acabar com quaisquer que sejam as formas de roubo de marcação em um jogo de truco ou outro.

2 - OBJETIVOS

2.1 - GERAL:

Com base nos programas de aprendizagem de física III, Sistemas Digitais I e Resolução de problemas de engenharia I, construir um projeto que integre essas disciplinas através de um projeto inovador.

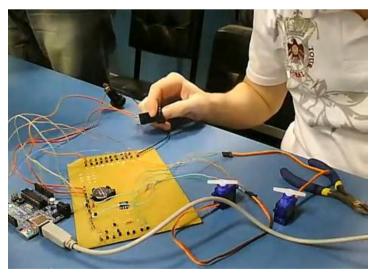
2.2 - ESPECÍFICOS

- 1. Estudar e testar o funcionamento dos princípios do movimento;
- 2. Desenvolver todo circuito necessário;
- 3. Confeccionar o placar para conter os servos o Arduino e o display;
- 4. Criar uma pagina na internet para postar atualizações do mesmo.
- 5. Utilizando a lógica programável desenvolver o hardware.

3 - MATERIAIS UTILIZADOS

. Fio de cobre esmaltado;
. Servos Motores;
. Dyplay LCD;
. Arduino Duemilanove;
. Placas fenolite e perfuradas;
. Capacitor e Resistores presentes nos circuitos citados;
. Cristal;
. Bateria 3V;
. Circuito Integrado DS1307;
. Pinos de Poste;
. Botão ButonPush;
. Fonte 5V, 3A;
. Fita Isolante (preta).

4 - DESCRIÇÃO GERAL


4.1 - HISTÓRIA DO PROJETO

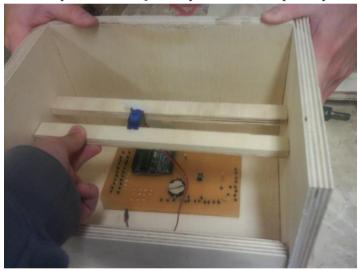
A idéia da placa portátil foi muito espontânea, foi em um momento de lazer com os integrantes do grupo e colegas de classe, justo no momento em que jogávamos Truco no intervalo das aulas durante a semana, onde Ronald saiu como uma idéia qualquer e acabou se tornando nosso objeto de estudo para o final do semestre, o projeto placar portátil.

4.2 - HARDWARE

Os primeiros passos para a construção do hardware que pudesse realizar o movimento dos placares foi a obtenção dos quatro servos motores, que são separados em dois para cada equipe, contando de uma pontuação de 0 até 99.

Onde ao apertar um determinado botão os mesmos alteram entre as pontuações desejadas.


Adicionamos também uma tela de LCD que marca o tempo de jogo(cronometro).


Todo o hardware é desenvolvido sobre um arduino que executa todos os equipamentos.

Foi criado para montagem do circuito e otimização do projeto uma placa de fenolite que conduz os 5V, o aterramento e o circuito do LCD.

Com o circuito e a programação praticamente todo montado, testado e funcionando. Partimos para a construção do que viria a ser o placar portátil.

A montagem foi feita nos próprios laboratórios da PUC-PR, utilizando-se materiais como madeira, cola, fitas isolantes, pregos e porcas. Podemos dizer que essa foi a parte final do projeto, a montagem externa.

4.3 - SOFTWARE

Para unir as funções dos botões e dos servos foi utilizado o software próprio do arduino, utilizando-se de parte da linguagem C e a própria linguagem disponibilizada pelas bibliotecas do Arduino, e algumas bibliotecas encontradas no site do mesmo.

4.4 - PROGRAMA PROJETO

#include <Servo.h>
#include <Button.h>

```
#include <WProgram.h>
#include <Wire.h>
#include <DS1307.h>
#include <LiquidCrystal.h>
Button rtc = Button(0,PULLUP); //Declarando o botao de subtrair pontos
Button pbut1p = Button(1,PULLUP); //Declarando o botao de somar pontos
Button butm1p = Button(6,PULLUP); //Declarando o botao de subtrair pontos
Button sbut1p = Button(7,PULLUP); //Declarando o botao de subtrair pontos
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
Servo pmyservo; //Declarando o servo que soma de 0 a 9
Servo pmyservo2; //Declarando o servo que soma de 0 a 99
Servo smyservo; //Declarando o servo que soma de 0 a 9
Servo smyservo2; //Declarando o servo que soma de 0 a 99
int ppos = 0; //Declarando variavel de posicao do servo 1
int ppos2 = 0; //Declarando variavel de posicao do servo 2
int spos = 0; //Declarando variavel de posicao do servo 1
int spos2 = 0; //Declarando variavel de posicao do servo 2
void setup()
 pmyservo.attach(8);
                       //Declarando pino do servo que soma de 0 a 9
 pmyservo2.attach(9);
                        //Declarando pino do servo que soma de 0 a 99
 smyservo.attach(10);
                        //Declarando pino do servo que soma de 0 a 9
 smyservo2.attach(13);
                         //Declarando pino do servo que soma de 0 a 99
 lcd.begin(20, 2); //20x4 LCD Display
 lcd.setCursor(1, 0); //Starts on column 3 row 0
 lcd.print("TEMPO
                       DATA"); //Line above centers statement
 Serial.begin(0);
 RTC.stop();
 RTC.set(DS1307_SEC,0);
                                 //set the seconds
 RTC.set(DS1307 MIN,0); //set the minutes
                                //set the hours
 RTC.set(DS1307_HR,0);
 RTC.set(DS1307_DOW,1);
                                //set the day of the week
 RTC.set(DS1307_DATE,01);
                                //set the date
 RTC.set(DS1307 MTH,6);
                                 //set the month
 RTC.set(DS1307_YR,11);
                                 //set the year
}
void loop()
 pmyservo.write(ppos); //dando posicao inicial ao servo 1
 delay(100);
 pmyservo2.write(ppos2); //dando posicao inicial ao servo 2
```

```
delay(100);
smyservo.write(spos); //dando posicao inicial ao servo 1
delay(100);
smyservo2.write(spos2); //dando posicao inicial ao servo 2
delay(100);
if(int(pmyservo.read())<180){ //enquanto servo 1 tiver angulo menos que 180 executa
 if(pbut1p.isPressed()){
  pmyservo.write(ppos+18); //soma 18 graus ou 1 ponto
  delay(100);
 else{
  if(butm1p.isPressed()){
   pmyservo.write(ppos-18); //diminui 18 graus ou 1 ponto
   delay(100);
  }
 }
else //quando servo atinge angulo acima dos 9 pontos
 pmyservo.write(0); //servo 1 retorna a pontuacao 0
 delay(100);
 pmyservo2.write(ppos2+18); //servo 2 soma 1 ponto ou aumenta 18 graus
 delay(100);
}
if(int(smyservo.read())<180){ //enquanto servo 1 tiver angulo menos que 180 executa
 if(sbut1p.isPressed()){
  smyservo.write(spos+18); //soma 18 graus ou 1 ponto
  delay(100);
 }
 else{
  if(butm1p.isPressed()){
   smyservo.write(spos-18); //diminui 18 graus ou 1 ponto
   delay(100);
else //quando servo atinge angulo acima dos 9 pontos
 smyservo.write(0); //servo 1 retorna a pontuacao 0
 delay(100);
 smyservo2.write(spos2+18); //servo 2 soma 1 ponto ou aumenta 18 graus
 delay(100);
}
if(butm1p.isPressed() && pmyservo.read()==0 && pmyservo2.read()>0){
   pmyservo2.write(ppos2-18);
```

```
delay(100);
           pmyservo.write(162);
           delay(100);
          }
       if(butm1p.isPressed() && smyservo.read()==0 && smyservo2.read()>0){
           smyservo2.write(spos2-18);
           delay(100);
           smyservo.write(162);
           delay(100);
       ppos=int(pmyservo.read());
       ppos2=int(pmyservo2.read());
       spos=int(smyservo.read());
       spos2=int(smyservo2.read());
      if(rtc.isPressed()){
       lcd.setCursor(0, 1);
       lcd.print("0:0:0 ");
       RTC.start();
       RTC.set(DS1307_HR,0);
       RTC.set(DS1307_SEC,0);
       RTC.set(DS1307_MIN,0);
       }
         else
         if(sbut1p.isPressed() && pbut1p.isPressed()){
          RTC.stop();
         }
         if(DS1307_SEC==0)
          lcd.setCursor(0, 1);
       lcd.print("
                     ");
         }
       lcd.setCursor(0, 1); //Starts on column 0 row 2
       lcd.print(RTC.get(DS1307_HR,true)); //read the hour and also update all the values by
pushing in true
       lcd.print(":");
       lcd.print(RTC.get(DS1307_MIN,false));//read minutes without update (false)
       lcd.print(":");
       lcd.print(RTC.get(DS1307_SEC,false));//read seconds
       //lcd.print(" ");
                                  // some space for a more happy life
       lcd.setCursor(10, 1);
       lcd.print(RTC.get(DS1307_DATE,false));//read date
       lcd.print("/");
       lcd.print(RTC.get(DS1307_MTH,false));//read month
```

```
lcd.print("/");
lcd.print(RTC.get(DS1307_YR,false)); //read year
//lcd.println();

delay(100);
}
```

5 - PROBLEMAS APRESENTADOS E SOLUÇÕES ENCONTRADAS

1º problema: A falta de conhecimento da equipe, onde nenhum membro da mesma possuía sequer algum conhecimento sobre os equipamentos necessários para o desenvolvimento do projeto.

Solução para o 1º problema: Antes do inicio e ao longo de todo o projeto, a equipe se empenhou em pesquisar e buscar os conhecimentos que fossem necessários para o desenvolvimento do projeto, conseguindo assim sucesso na maioria das vezes.

2º problema: O atraso para compra do Arduino.

Solução para o 1º problema: Foi comprado de um projeto feito anteriormente.

3º problema: O Arduino Duemilanove quem obtemos não possui todas as entradas digitais necessárias para o desenvolvimento do projeto.

Solução para o 2º problema:Foi reduzido o numero de botões, conseqüentemente o numero de funções para que o projeto se adequasse ao tamanho disponível do Arduino.

4º problema: O tempo de término do projeto, em que acabaremos excedendo o prazo final de entrega.

6 - GLOSSÁRIO

Circuito Integrado: É abreviado por CI, é um dispositivo microeletrônico que consiste

de muitos transistores e outros componentes interligados capazes de desempenhar muitas funções. Suas dimensões são extremamente reduzidas, os componentes são

formados em pastilhas de material semicondutor.

Eagle: Programa utilizado para o desenho de circuitos para posteriormente

serem impressos na placa de fenolite.

Servomotor: O servomotor é uma máquina síncrona composta por uma parte fixa (o estator) e outra móvel (o rotor). O estator é bobinado como no motor elétrico convencional, porém, apesar de utilizar alimentação trifásica, não pode ser ligado diretamente à rede, pois utiliza uma bobinagem especialmente confeccionada para proporcionar alta dinâmica ao sistema. O rotor é composto por ímãs permanentes dispostos linearmente e um gerador de sinais (resolver) instalado para fornecer sinais de velocidade e posição.

Resistor: Um resistor um dispositivo elétrico muito utilizado em <u>eletrônica</u>, ora com a finalidade de transformar <u>energia elétrica</u> em <u>energia térmica</u> (<u>efeito joule</u>),ora com a finalidade de limitar a quantidade de corrente elétrica em um circuito, a partir do material empregado, que pode ser por exemplo <u>carbono</u> ou <u>silício</u>.

Circuito Impresso: Foram criados em substituição às antigas pontes onde se fixavam os componentes eletrônicos, em montagem conhecida no jargão de eletrônica como montagem "aranha", devido a aparência final que o circuito tomava, principalmente onde existiam válvulas eletrônicas e seus múltiplos pinos terminais do soquete de fixação.

O circuito impresso consiste de uma placa de <u>fenolite</u>, <u>fibra de vidro</u>, <u>fibra de poliéster</u>, filme de <u>poliéster</u>, filmes específicos à base de diversos <u>polímeros</u>, etc,

LCD: Um display de cristal líquido, <u>acrônimo</u> de LCD é um painel fino usado para exibir informações por via eletrônica, como texto, imagens e vídeos. Seu uso inclui monitores para computadores, televisores, painéis de instrumentos e outros dispositivos, que vão desde cockpit de aeronaves, displays em computadores de bordo de automóveis, a dispositivos de utilização diárias, tais como leitores de vídeo, dispositivos de jogos, relógios, calculadoras e telefones.

Arduino Hardware: é um computador físico baseado numa simples plataforma de hardware livre, projetada com um microcontrolador de placa única, com suporte de entrada/saída embutido e uma linguagem de programação padrão, na qual tem origem em Wiring, e é essencialmente C/C++. O objetivo do projeto é criar ferramentas que são acessíveis, com baixo custo, flexíveis e fáceis de se usar por artistas e amadores. Principalmente para aqueles que não teriam alcance aos controladores mais sofisticados e de ferramentas mais complicadas

Arduino Software: O Arduino <u>IDE</u> é uma aplicação <u>multiplataforma</u> escrita em <u>Java</u> na qual é derivada dos projetos <u>Processing</u> e <u>Wiring</u>. É esquematizado para introduzir a programação a artistas e a pessoas não familiarizadas com o desenvolvimento de software.

Protoboard: É uma placa com furos e conexões condutoras para montagem de circuitos elétricos experimentais. A grande vantagem do protoboard na montagem de <u>circuitos</u> <u>eletrônicos</u> é a facilidade de inserção de componentes, uma vez que não necessita soldagem.

7 - CONCLUSÃO

Desde que o tema nos foi proposto, diversas idéias de projetos surgiram dentro do grupo. Devido à problemas de complexidade ou falta dela, algumas foram abandonadas imediatamente.

Decidimos então desenvolver o atual projeto, ou seja, o Placar Portátil. Que trabalhamos através de semanas para desenvolve-lo e implementá-lo.

O projeto trata-se de um placar que marca a pontuação e o tempo de um jogo qualquer, com especialidade ao truco, que foi de onde nos surgiu a idéia.

Os vários problemas encontrados no decorrer do projeto, principalmente pela falta de experiência dos integrantes, também proporcionaram um grande aprendizado, pela necessidade de buscar soluções o mais rápido possível.