PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ ESCOLA POLITÉCNICA CURSO DE ENGENHARIA DE COMPUTAÇÃO

BRUNO SCHEREMETA

GUILHERME ALVES FERREIRA

VINICIUS AGUETILDE PELICK

PROJETO WORLD CLOCK

CURITIBA 2013

BRUNO SCHEREMETA GUILHERME ALVES FERREIRA VINICIUS AGUETILDE PELICK

PROJETO WORLD CLOCK

Trabalho apresentado ao curso de Engenharia de Computação, da Pontifícia Universidade Católica do Paraná, como requisito parcial de avaliação das disciplinas de Física 3 e Resolução de Problemas em Engenharia 1.

Prof. Afonso Miguel

CURITIBA 2013 **RESUMO**

A partir de uma estrutura com uma capacidade de rotação, controlada por um

pwm, um arduíno é acoplado a uma base redonda, que controlará sete led's fixados

em uma placa que está presa na supefície de um cilindro oco verticalmente

posicionado em relação a esta base redonda. Conforme a estrutura roda, os led's

acendem periódicamente formando uma ilusão de ótica, a imagem de um relógio

digital.

Palavras-Chave: Relógio, hélice.

ABSTRACT

From a structure with an ability of rotation is controlled by a PWM, an Arduino

is coupled to a round base, which control seven LEDs fixed on a plate which is

trapped on surface of a hollow cylinder vertically positioned in relation to this round

base. As the structure rotates, the LEDs light up periodically forming an optical

illusion, the image of a digital clock.

Keywords: Clock, propeller.

3

Sumário

1.	INTRODUÇÃO				
2. OBJETIVO GERAL					
:	2.1.	Objetiv	vos específicos	5	
3. PROJETO					
3.1. Materiais utilizados					
	3 1	.1.	World Clock		
		.2.	Placa retificadora		
4. DESCRIÇÃO GERAL.					
			ção do projeto		
4.2.		Hardware		7	
	4.2	2.1.	PWM	7	
	4.2	2.2.	Placa retificadora	9	
4	4.3.	Diagra	ma de Blocos	10	
	4.4.	Proble	mas e Soluções	11	
5.	5. CÓDIGO FONTE				
ļ	5.1.	Resulta	ado final	22	
6. CONSLUSÃO					
7	7 REFERÊNCIAS 24				

1. INTRODUÇÃO

O World Clock é uma variação de outros projetos já existentes, cujo nome original é "Propeller Clock", "Relógio Hélice". O motivo da escolha desta ideia para servir como base para o projeto, é justamente pelo fato de abranger uma parte do conteúdo que está sendo aplicado à turma do terceiro período de Engenharia de Computação, ou seja: movimento, programação (arduíno, C), circuito (arduíno, placa elétrica e componentes).

O projeto em si, não trás nenhuma novidade para o mundo, muito menos uma utilidade benéfica ao ser humano, porém este objeto poderia ser utilizado como um artefato de decoração, e além de um simples relógio digital o W.C., poderia exibir mensagens, de acordo com o que fosse programado em seu núcleo (arduíno).

2. Objetivo geral

Fazer um relógio digital ser visualizado a partir de um conjunto de sete leds que acendem periódicamente, em uma estrutura cilíndrica posicionada verticalmente, que gira de acordo com a velocidade ajustada pelo pwm.

2.1. Objetivos específicos

Para a conclusão do projeto, é necessário que diversas etapas sejam realizadas, por exemplo, a construção do PWM para controle do motor, o anel mecânico para os leds, confeccionar a placa retificadora e filtros e o receptor infravermelho para receber o sinal do controle.

3. PROJETO

O projeto possui muitas informações, desde componentes, peças, materiais, em si o World Clock, possui toda uma descrição junto a sua história de desenvolvimento, esta parte da documentação irá referir-se exclusivamente a isto.

3.1. Materiais utilizados

Para cada parte do projeto, um conjunto de materiais foram utilizados, este tópico irá separar os materiais para suas respectivas partes.

3.1.1. Word Clock

- Quatro rolamentos com 10mm de diâmetro externo e 3mm para o furo interno;
- Base de madeira prensada;
- Astes de alumínio moldados para fixação das demais partes;
- Parafusos auto atarrachantes para fixação das astes de alumínio na base;
- Anel cilíndrico de cano PVC;
- Motor DC 12v/1A;
- Pedaço de motor;
- Tubo de aço inox 4mm de diâmetro para proteger o eixo;
- Barra roscada de 3mm de diâmetro utilizado como eixo;
- Regulador de tensão 7812 para sincronização da imagem;
- Roscas;
- Arduíno ATmega1280.

3.1.2. Placa retificadora

- 7 leds auto brilho, 6 azul e 1 verde;
- Reguladores de tensão 7812 e 7805;
- Três baterias 3V de lítio recarregáveis;
- Resistor de 220 Ω;
- Ponte retificadora;
- Placa universal para placa retificadora.

4. DESCRIÇÃO GERAL

Todo projeto deve ter um histórico, desde a ideia que lhe deu origem, problemas encontrados juntos de suas resoluções no desenvolvimento, alterações feitas da ideia original do projeto até o resultado final de todo o esforço. Esta parte da documentação será utilizada para demonstrar todo desenvolvimento deste projeto.

4.1. História do Projeto

Inicialmente, o nome World Clock, foi escolhido a partir de um projeto já existente chamado Propeller Clock (Relógio Hélice). O World Clock, tinha como objetivo inicial formar a imagem do globo terrestre, junto ao relógio digital a partir da ilusão de ótica formada pelos leds que piscam de forma organizada (controle realizado pelo arduíno que contém uma programação interna em linguagem C) em uma determinada frequência. Tinha-se em mente a utilização de setenta e dois leds para a formação da imagem digital e da imagem do globo. Após vários brain storms, e com o auxílio dos professores orientadores, foi optado por utilizar apenas sete leds somente para a formação da imagem do relógio, pois existem outros métodos para realizar o controle de tantas saídas ao mesmo tempo com um método mais avançado. Então esta ideia com os demais leds, foi postergada para um futuro projeto que este grupo pode aprimorar o World Clock..

4.2. Hardware

O projeto teve duas partes de hardware que foram confeccionadas e feitas para suprir necessidades, o pwm e a placa retificadora.

4.2.1. PWM

O PWM – Pulse Widht Modulation, ou seja, modulação por largura de pulso – foi uma solução simples para o controle de velocidade do motor. Inicialmente tinha-se a ideia de utilizar simplesmente um potenciômetro para regular as rpm do motor, porém com muita potência iria ser dissipada no potenciômetro, o que não é muito

viável. Sendo assim, surgiu a ideia, junto ao professor orientador, para que um PWM fosse desenvolvido afim de controlar a rotação do motor, a partir das larguras de pulsos que o CI NE555, envia de acordo com o ajuste que é no potenciômetro ligado ao circuito.

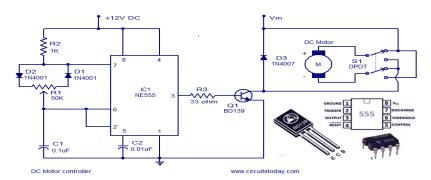


Fig. 1 – Circuito base para desenvolvimento do PWM.

A imagem acima representa o circuito base utilizado para o desenvolvimento do PWM utilizada no projeto. Algumas alterações foram feitas, para melhor adaptação as necessidades do World Clock. O potenciômetro R1 de $50k\Omega$ foi substituído por um de $100k\Omega$, pois com este valor era possível manter os pulsos que chegam até o motor, de forma a manter o motor em sua velocidade máxima e também em estado de repouso. Outro componente trocado foi o resistor R3, que foi substituído por um valor de $2k\Omega$.

Fig. 2 – PWM / Fonte chaveada

Fig. 3 - PWM dentro de sua caixa, já finalizado.

4.2.2. Placa retificadora

Fig. 4 - Placa retificadora

Depois de vários Brains Storms, e pesquisas, para conseguir fazer com que a alimentação chegasse à estrutura superior, um método foi encontrado. Os motores dc, possuem um parte na sua estrutura que está diretamente relacionado com os imãs, esta parte é chamada de parte coletora do motor.

Fig. 5 – Retirando a parte coletora do motor.

Foi recordada a base inferior do motor, para que estas partes essenciais fossem utilizados. Esta base inferior do motor possui duas micro escovas de carvão. O coletor do motor foi posicionado de forma que seus dois polos conforme girem, entre em contado com estas escovas que estão ligados em pequenas chapas de cobre, e possuem um alimentação proveniente de uma fonte chaveada de 18V, por sua vez, conforme a estrutura rotaciona, partes do coletor encostam nestes carvões, porém como esta parte fica em constante rotação é impossível que somente com esta estrutura a tensão de alimentação do arduíno, mantenha-se constante sem que o seu sinal seja alternado. Para solucionar isso foi desenvolvido uma placa retificadora, para que o sinal de tensão seja constante, e não haja percas nem ruídos conforme a estrutura roda.

Fig. 5 – Pedaço de motor + Coletor.

4.3. Diagrama de Blocos

Este tópico é exclusivamente, para melhor entendimento das etapas de funcionamento do projeto.

Fig. 4 – Diagrama de Blocos World Clock.

Resumindo, a caixa do PWM, possui junto de si uma fonte chaveada, então, com apenas uma estrutura foi possível realizar a alimentação do motor e a do circuito. Passada esta etapa, a tensão chegará a base coletora, passando o sinal de tensão de forma alternada para a estrutura superior, para que esta tensão não seja alternada, como já informado em tópicos anteriores, a tensão vai passar por uma retificação encontrada no bloco referente a placa retificadora. Feita a retificação do sinal, a alimentação chega ao arduíno que por sua vez irá realizar o controle dos leds a partir de uma programação interna feita em C, e também poderá realizar alterações de horário a partir de um receptor infravermelho que serve para receber o sinal de um controle, para que então as alterações sejam feitas.

4.4. Problemas e soluções

de segundos para formar o relógio.

PROBLEMAS Realizar a alimentação do circuito que gira com a estrutura. Como retificar a alimentação que alterna de positivo para negativo Manter a imagem do relógio parada Balanceamento da Estrutura Para fazer um relógio, precisa-se de um um loop infinito com delay de 1s, e para a formação da imagem precisa de outro loop infinito. O arduíno não tem processamento suficiente para rodar estes dois loops infinitos. **SOLUÇÕES** Utilizou-se um pedaço de motor que contém a parte receptora e os imãs que mandam e alimentam o circuito. Confeccionar uma placa retificadora para manter o sinal de alimentação constante. Utilizou-se um transistor 7812 posicionado estrategicamente, que toda vez que recebe um pulso de alimentação, ele envia um sinal para uma entrada do arduíno, esta entrada é utilizada no programa, para ativar o programa somente quando estiver em HIGH. Fixar o motor o motor estrategicamente, e uma base redonda com a placa retificadora e o arduíno posicionados próximo ao eixo central. A partir do clock do arduíno, o tempo que o arduíno demora para realizar uma tarefa inteira, foi recolhido e foi dividido por 1000, com este valor obtido, foi possível realizar um contador

5. CÓDIGO FONTE (C)

```
#include <IRremote.h>
int aux=0;
int aux2=0;
int RECV_PIN = 2;
IRrecv irrecv(RECV PIN);
decode results results;
void setup() {
  for (int i=7; i <= 12; i++) {
    pinMode(i, OUTPUT);
  irrecv.enableIRIn();
  pinMode(53,INPUT);
  Serial.begin(9600);
void loop() {
  if (irrecv.decode(&results)){
    long int decCode = results.value;
    switch (decCode) {
      case 4105841032:
        while (aux <= 60) {
          if(digitalRead(53) == HIGH) {
           escreve();
           aux ++;
          }
        }
         break;
      case 1595074756:
        while (aux2 <= 60) {
          if(digitalRead(53) == HIGH) {
           escreve2();
           aux2 ++;
          }
        }
     break;
      }
     irrecv.resume();
  }
void escreve(){
    delay(20);
    letraP();
```

```
delay(2);
    letraU();
    delay(2);
    letraC();
    delay(3);
    letraP();
    delay(2);
    letraR();
    delay(80);
void escreve2(){
    delay(20);
    numeroUm();
    delay(2);
    numeroDois();
    delay(2);
    numeroTres();
    delay(3);
    numeroQuatro();
    delay(80);
}
void numeroUm(){
  digitalWrite(13, HIGH);
  digitalWrite(9, HIGH);
  delay(1);
  digitalWrite(9, LOW);
  digitalWrite(8,HIGH);
  delay(1);
  digitalWrite(8, LOW);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
void numeroDois(){
   digitalWrite(13, HIGH);
       ****
       ****
       ***
  */
  //Primeira parte
  digitalWrite(7,HIGH);
```

```
digitalWrite(10,HIGH);
  digitalWrite(11,HIGH);
  digitalWrite(12,HIGH);
  delay(1);
  digitalWrite(7,LOW);
  digitalWrite(10,LOW);
  digitalWrite(11,LOW);
  digitalWrite(12,LOW);
  //Segunda parte
  digitalWrite(7,HIGH);
  digitalWrite(10,HIGH);
  digitalWrite(12,HIGH);
  delay(1);
  digitalWrite(7,LOW);
  digitalWrite(10,LOW);
  digitalWrite(12,LOW);
  //TERCEIRA PARTE
  digitalWrite(7, HIGH);
  digitalWrite(10,HIGH);
  digitalWrite(12,HIGH);
  delay(1);
  digitalWrite(7,LOW);
  digitalWrite(10,LOW);
  digitalWrite(12,LOW);
  //QUARTA PARTE
  digitalWrite(7,HIGH);
  digitalWrite(8,HIGH);
  digitalWrite(9,HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(12,HIGH);
  delay(1);
  digitalWrite(7,LOW);
  digitalWrite(8,LOW);
  digitalWrite(9,LOW);
  digitalWrite(10,LOW);
  digitalWrite(12,LOW);
void numeroTres(){
  digitalWrite(7, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
  digitalWrite(12, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
```

```
digitalWrite(12, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
  digitalWrite(12, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
  digitalWrite(12, LOW);
  for(int i=7; i<=12;i++) {
    digitalWrite(i, HIGH);
  }
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
}
void numeroQuatro() {
  for (int i=7; i <= 9; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 9; i++) {
    digitalWrite(i, LOW);
  int aux=0;
  while(aux<=1) {</pre>
    digitalWrite(9, HIGH);
    aux++;
    delay(1);
  digitalWrite(9, LOW);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
  }
void numeroCinco() {
  for (int i=7; i <= 9; i++) {
```

```
digitalWrite(i, HIGH);
    delay(1);
   for (int i=7; i <= 9; i++) {
    digitalWrite(i, HIGH);
  int aux=0;
  while(aux<=1) {</pre>
    digitalWrite(7, HIGH);
    digitalWrite(9, HIGH);
    digitalWrite(12, HIGH);
    aux++;
    delay(1);
    digitalWrite(7, LOW);
    digitalWrite(9, LOW);
    digitalWrite(12, LOW);
  for (int i=9; i <= 12; i++) {
    digitalWrite(7, HIGH);
    digitalWrite(i, HIGH);
  delay(1);
  for(int i=9; i<=12; i++){
    digitalWrite(7, LOW);
    digitalWrite(i, LOW);
}
void numeroSeis(){
void letraM() {
  digitalWrite(13, HIGH);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
  digitalWrite(8, HIGH);
  delay(1);
  digitalWrite(8, LOW);
  digitalWrite(9, HIGH);
  delay(1);
  digitalWrite(9, LOW);
  digitalWrite(10, HIGH);
  delay(1);
  digitalWrite(10, LOW);
```

```
digitalWrite(9, HIGH);
  delay(1);
  digitalWrite(9, LOW);
  digitalWrite(8, HIGH);
  delay(1);
  digitalWrite(8, LOW);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
}
void letraA() {
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(10, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(10, LOW);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  }
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
void letraE(){
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
```

```
digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(10, LOW);
  digitalWrite(12, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(10, LOW);
  digitalWrite(12, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(10, LOW);
  digitalWrite(12, LOW);
}
void letraJ(){
  digitalWrite(7, HIGH);
  digitalWrite(10, HIGH);
  digitalWrite(11, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(10, LOW);
  digitalWrite(11, LOW);
  int aux=0;
  while(aux<=2){
    digitalWrite(7, HIGH);
    digitalWrite(12, HIGH);
    aux++;
    delay(1);
  digitalWrite(7, LOW);
  digitalWrite(12, LOW);
  for(int i=7; i<=11; i++){
    digitalWrite(i, HIGH);
  }
  delay(1);
  for (int i=7; i <= 11; i++) {
    digitalWrite(i, LOW);
  }
}
void letraS() {
```

```
digitalWrite(7, HIGH);
  digitalWrite(8, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(8, LOW);
  digitalWrite(9, LOW);
  digitalWrite(12, LOW);
  int aux=0;
  while(aux<=1) {</pre>
    digitalWrite(7, HIGH);
    digitalWrite(9, HIGH);
    digitalWrite(12, HIGH);
    aux++;
   digitalWrite(7, LOW);
   digitalWrite(9, LOW);
   digitalWrite(12, LOW);
  for (int i=9; i <= 12; i++) {
    digitalWrite(7, HIGH);
    digitalWrite(i, HIGH);
  }
  delay(1);
  for (int i=9; i <= 12; i++) {
    digitalWrite(7, LOW);
    digitalWrite(i, LOW);
  }
}
void letraI(){
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for(int i=7; i<=12;i++) {
    digitalWrite(i, LOW);
void letraC(){
   for (int i=8; i <= 11; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for(int i=8; i<=11;i++) {
    digitalWrite(i, LOW);
  int aux=0;
  while(aux<=1){
    digitalWrite(7, HIGH);
    digitalWrite(12, HIGH);
    aux++;
    delay(1);
```

```
digitalWrite(7, LOW);
  digitalWrite(12, LOW);
  digitalWrite(8, HIGH);
  digitalWrite(11, HIGH);
  delay(1);
  digitalWrite(8, LOW);
  digitalWrite(11, LOW);
void letraP(){
  for(int i=7; i<=12;i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
  int aux=0;
  while(aux<=1) {</pre>
    digitalWrite(7, HIGH);
    digitalWrite(9, HIGH);
    aux++;
    delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
    for (int i=7; i <= 9; i++) {
    digitalWrite(i, HIGH);
  }
  delay(1);
  for (int i=7; i <= 9; i++) {
    digitalWrite(i, LOW);
  }
}
void letraU(){
  for(int i=7; i<=12;i++) {
    digitalWrite(i, HIGH);
  }
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
  int aux=0;
  while(aux<=1) {</pre>
    digitalWrite(12, HIGH);
    aux++;
    delay(1);
  digitalWrite(12, LOW);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
```

```
delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
}
void letraR() {
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, HIGH);
  delay(1);
  for (int i=7; i <= 12; i++) {
    digitalWrite(i, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(10, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
  digitalWrite(10, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(11, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(9, LOW);
  digitalWrite(11, LOW);
  digitalWrite(7, HIGH);
  digitalWrite(8, HIGH);
  digitalWrite(9, HIGH);
  digitalWrite(12, HIGH);
  delay(1);
  digitalWrite(7, LOW);
  digitalWrite(8, LOW);
  digitalWrite(9, LOW);
  digitalWrite(12, LOW);
```

5.1. Resultado da programação

Após toda programação e estrutura ter sido completada, o efeito desejado finalmente foi alcançado, logo abaixo o resultado final do projeto.

Fig. 4 – Resultado Final

6. CONCLUSÃO

Utilizando a ideia de movimento e a parte de hardware, é possível criar coisas incríveis com criatividade e pesquisa. Existem métodos muito mais simples de se fazer este projeto, porém o conhecimento até então obtido não era suficiente para tal, tanto que de setenta e dois leds, o projeto final ficou só com sete, e mesmo assim possui um efeito impressionante.

Diversos problemas foram encontrados, e correr atrás de soluções, implementar funcionalidades, todos estes itens citados foram importantes para o aprimoramento do conhecimento do grupo.

O arduíno, apesar de ser uma ferramenta muito útil, possui suas limitações, limitações estas que foram citadas no tópico de problemas e soluções. A forma para qual este problema se encaminhou, mostra como o pensamento em grupo pode fazer com que mesmo com pouco recurso, um pouco de criatividade e boa vontade faça deste pouco recurso, uma ferramenta mais do que necessária para resolver qualquer empecilho.

7. REFERÊNCIAS

- Auxílio em programação e funcionamento do Arduíno http://www.arduino.cc/
- Montagem do PWM

http://www.circuitstoday.com/dc-motor-controller